�

Internal

BU Electronic Controllers		

			

From: �AUTHOR �Patrick PERRIER ��

Tel.: �USERINITIALS �.�520�

Date: 29th July 97

��

Subject:	�SUBJECT �DESIGN DESCRIPTION: SBUS: FULL PROTOCOL DESCRIPTION���Doc #:	�TITLE � DD-EPFW6-027�

��For Action�For Information�For Circulation���

Revision History.

1.0	10/11/90	G.Kershaw	First Draft.

1.1	14/11/90	G.Kershaw	First Technical Review.

1.2	11/04/91	G.Kershaw	Modification to telegrams.

1.3	13/09/91& 12/12/91	G.Kershaw	Renamed document

1.4	16/07/92	G.Kershaw	Corrected the example telegram.

1.5	7/08/92	Th.Friedli 	Small Modifications &

			New telegrams for FULL SBUS &

			New telegrams (Memory Ext.)

1.6		Th.Friedli	Small Modifications:

			Remove telegrams 'Read Program

			Structure', 'Read Trace Table'

			and 'Check Connection'.

1.7	25/11/92	Th.Friedli 	Small Modifications after

			discussion with Matt Harvey.

1.8	13/04/93	Th.Friedli 	Add <block-type> ::= 8 (SB)

			for the telegrams 110, 157 and 158.

1.9	06/12/93	Th. Friedli 	Final update to DESIGN DESCRIPTION.

			 (Based on Doc. No. RS-EPFW6-001)

1.10	24/02/94	Th. Friedli 	Implementation of a new tgm (145d)

			'Read Hangup Timeout' for project

			'MODEMS+'.

1.11	29/07/97	P.Perrier	Introduced Read/write EEPROM, Erase flash, Restart Cold Flag commands, removed not implemented commands and reformated the document from ascii to winword.

�TABLE OF CONTENT.

� TOC * MERGEFORMAT �1. INTRODUCTION	� GOTOBUTTON _Toc394890070 � PAGEREF _Toc394890070 �3��

1.1 PURPOSE	� GOTOBUTTON _Toc394890071 � PAGEREF _Toc394890071 �3��

1.2 SCOPE	� GOTOBUTTON _Toc394890072 � PAGEREF _Toc394890072 �3��

1.3 TABLE OF CONTENTS	� GOTOBUTTON _Toc394890073 � PAGEREF _Toc394890073 �3��

1.4 REFERENCES	� GOTOBUTTON _Toc394890074 � PAGEREF _Toc394890074 �3��

2. OSI LAYER OVERVIEW	� GOTOBUTTON _Toc394890075 � PAGEREF _Toc394890075 �3��

2.1 PROTOCOL STRUCTURE	� GOTOBUTTON _Toc394890076 � PAGEREF _Toc394890076 �3��

3. APPLICATION LAYER	� GOTOBUTTON _Toc394890077 � PAGEREF _Toc394890077 �3��

3.1 GENERAL DESCRIPTION	� GOTOBUTTON _Toc394890078 � PAGEREF _Toc394890078 �3��

3.1.1 Variable Access Service	� GOTOBUTTON _Toc394890079 � PAGEREF _Toc394890079 �4��

3.1.2 Status Service	� GOTOBUTTON _Toc394890080 � PAGEREF _Toc394890080 �4��

3.1.3 Program Management Service	� GOTOBUTTON _Toc394890081 � PAGEREF _Toc394890081 �4��

3.1.4 Program Commissioning Service	� GOTOBUTTON _Toc394890082 � PAGEREF _Toc394890082 �4��

3.2 REDUCED SAIA-BUS: USER APPLICATION LAYER	� GOTOBUTTON _Toc394890083 � PAGEREF _Toc394890083 �4��

3.3 FULL SAIA-BUS: USER APPLICATION LAYER (A)	� GOTOBUTTON _Toc394890084 � PAGEREF _Toc394890084 �4��

3.4 FULL SAIA-BUS, THE STANDARD SAIA APPLICATION LAYER (B)	� GOTOBUTTON _Toc394890085 � PAGEREF _Toc394890085 �4��

3.5 MEDIA FORMAT	� GOTOBUTTON _Toc394890086 � PAGEREF _Toc394890086 �5��

3.5.1 Integer Format	� GOTOBUTTON _Toc394890087 � PAGEREF _Toc394890087 �5��

3.5.2 Floating-Point Format	� GOTOBUTTON _Toc394890088 � PAGEREF _Toc394890088 �5��

3.5.3 Binary Format	� GOTOBUTTON _Toc394890089 � PAGEREF _Toc394890089 �5��

3.6 APPLICATION PROTOCOL	� GOTOBUTTON _Toc394890090 � PAGEREF _Toc394890090 �6��

3.6.1 . Write & control procedure: (as seen at the Application Layer)	� GOTOBUTTON _Toc394890091 � PAGEREF _Toc394890091 �6��

3.6.2 Read procedure: (as seen at the Application Layer)	� GOTOBUTTON _Toc394890092 � PAGEREF _Toc394890092 �6��

4. PRESENTATION LAYER	� GOTOBUTTON _Toc394890093 � PAGEREF _Toc394890093 �6��

4.1 SYNTAX REPRESENTATION	� GOTOBUTTON _Toc394890094 � PAGEREF _Toc394890094 �6��

4.1.1 Example	� GOTOBUTTON _Toc394890095 � PAGEREF _Toc394890095 �6��

4.1.2 General Definitions	� GOTOBUTTON _Toc394890096 � PAGEREF _Toc394890096 �7��

4.2 VARIABLE ACCESS SERVICE TELEGRAMS	� GOTOBUTTON _Toc394890097 � PAGEREF _Toc394890097 �10��

5. NETWORK LAYER	� GOTOBUTTON _Toc394890098 � PAGEREF _Toc394890098 �18��

5.1 NETWORK LAYER SERVICE	� GOTOBUTTON _Toc394890099 � PAGEREF _Toc394890099 �18��

5.1.1 The structure of a typical telegram	� GOTOBUTTON _Toc394890100 � PAGEREF _Toc394890100 �18��

6. DATA LINK LAYER	� GOTOBUTTON _Toc394890101 � PAGEREF _Toc394890101 �18��

6.1 UPPER SUB-LAYER	� GOTOBUTTON _Toc394890102 � PAGEREF _Toc394890102 �18��

6.1.1 Transmission of a command telegram	� GOTOBUTTON _Toc394890103 � PAGEREF _Toc394890103 �19��

6.1.2 Invocation of response messages	� GOTOBUTTON _Toc394890104 � PAGEREF _Toc394890104 �20��

6.1.3 Half-Duplex Protocol	� GOTOBUTTON _Toc394890105 � PAGEREF _Toc394890105 �20��

7. PHYSICAL LAYER	� GOTOBUTTON _Toc394890106 � PAGEREF _Toc394890106 �20��

7.1 PHYSICAL LAYER RS485	� GOTOBUTTON _Toc394890107 � PAGEREF _Toc394890107 �21��

7.2 PHYSICAL LAYER RS232	� GOTOBUTTON _Toc394890108 � PAGEREF _Toc394890108 �21��

8. APPENDIX A: TELEGRAM PERMISSIONING	� GOTOBUTTON _Toc394890109 � PAGEREF _Toc394890109 �21��

8.1 INTRODUCTION	� GOTOBUTTON _Toc394890110 � PAGEREF _Toc394890110 �21��

8.2 COMMENT FOR PERMISSION TABLE	� GOTOBUTTON _Toc394890111 � PAGEREF _Toc394890111 �21��

�

�

INTRODUCTION

Purpose

The SAIA-BUS Protocol is a protocol which allows the exchange ofinformation across a single-client multiple-server network. Theprotocol has the same functionality as the SAIA-PGU protocol but is much simpler and so presents less loading on the processor of PCDsystem.

Scope

This document provides a detailed description of the syntax of the telegrams in the presentation layer and a discussion of the other layers implemented in this protocol.

TABLE OF CONTENTS

PCD	: Programmable Controller generation D.

OSI	: Open System Interface.

Media	: Flags, registers, timers, counters, inputs, outputs, real-time clock, PCD status or display, register of a SAIA-PCD.

SI	: Serial Interface, Serial Port.

PLM	: Public Line Modem.

SBUS-PGU 	: Any SI configured for FULL SBUS (with or without PLM).

SBUS-PGU-PLM	: Any SI configured for FULL SBUS with PLM.

References

Functional Specification for the SAIA-PGU Protocol 21/10/88 M.Felser

OSI LAYER OVERVIEW

Protocol Structure

The following diagram shows the implementation of the layers in the SAIA-BUS protocol.

OSI model applied to SAIA-BUS:

Application Layer�SAIA-BUS (Reduced & Full) Protocols.		��Presentation Layer�Telegrams 0 -> 255��Session Layer�Not Used��Transport Layer�Not Used��Network Layer�Forced parity mechanism��Data Link Layer Upper sub-level

Lower sub-level�

ACK/NAK/CR mechanism

byte synchronisation + CRC-16 Error checking��Physical Layer�RS485,RS232,20Ma CL etc��

APPLICATION LAYER

General Description

The Client (Master) can be any PLC in the SAIA PCD series or any other computer which can drive the SAIA-BUS Protocol. The Server (Slave) is defined as the system which interprets the Clients command or request. There are four sets of services which are available at this layer which are described here.

�

Variable Access Service

The following variables can be accessed by the SAIA-BUS protocol.

Code�Type	�Format��R�Register�Integer / Floating point��C�Counter�Positive integer��T�Timer	�Positive integer	��F�Flag	�Binary	��I�Input	�Binary	��O�Output�Binary	��K�The real time clock�Special format��D�The display register�Any format��

These variables can be read and written to by the services provided by this layer.

Status Service

The status of the PCD may be requested by the Client. The following states are allowed for each processor in the PCD:

	S	Stopped (by the debugger)

	H	Halted	(by different reasons)

	R	Running

	C	Conditional running (Waiting for breakpoints)

	D	Disconnected (Processor does not exist)

Program Management Service

This service allows up and downloading of programs and texts to the different processors in the PCD (server). A limited control over the execution of the program is also provided which allows the possibility to restart cold, start and stop the processor. It will also be possible to display the history list.

Program Commissioning Service

This service provides all the remaining telegrams which go to make up the full protocol.

REDUCED SAIA-BUS: User Application Layer

This will use the standard PCD communications instructions for PCD to PCD communications and provides the variable access and status services.

FULL SAIA-BUS: User Application layer (a)

Drivers will be available for the user to provide the program management, variable access and status services for his own application layer. These drivers will initially be available in 'C' and Pascal. This will be useful for applications such as supervision i.e. Factory Link.

FULL SAIA-BUS, the Standard SAIA Application Layer (b)

The standard SAIA application layer is that of the PCD8.P3 Programming Tools which provides program commissioning and management, status and variable access services (i.e. the full protocol). These tools will be modified to accommodate the new protocol whilst keeping the functionality the same.

NOTE: The full services will be provided ONLY by the SAIA Programming Tools.

�Variable and Status access�Program

Management�Program Commissioning��REDUCED S-BUS�Supported����FULL S-BUS (a)�Supported�Supported���FULL S-BUS (b)�Supported�Supported�Supported��

A server will only be able to receive telegrams from the level(s) of service that it is currently supporting. This means that if a telegram is received which is not supported by the services which are running in the server then it will respond with a NAK (See Data Link Layer).

Media Format

Integer Format

The integer format is based on 32 Bits with the following format:

�

where	x - 31 bit value

	s - sign

The sign bit is a zero for a positive value, and a one for a negative value. The range allowed by this format is as follows:

DECIMAL

	2'147'483'647	>	VALUE	>	-2'147'483'648

BINARY (HEXADECIMAL)

7FFF'FFFF	>	VALUE	>	8000'0000

Floating-Point Format

The floating point format is based on 32 Bits with the following format:

�

 where m - 24-bit mantissa

	 s - sign of the number

	 e - 7-bit exponent in excess 64 notation

The mantissa is considered to be a binary fixed point fraction and except for zero it is always normalised (has a one bit in its highest position). Thus, it represents a value of less than one but greater

than or equal to one-half. The sign bit is a zero for a positive value, and a one for a negative value. The exponent is the power of two needed to correctly position the mantissa to reflect the number's true arithmetic value. It is held in excess 64 notation which means that the two's complement values are adjusted upward by 64, thus changing 40H (-64) - 3FH (+63) to 00H - 7FH. This facilitates comparisons among floating-point values. The value of zero is defined as all 32 bits being zeroes. The sign, exponent, and mantissa are entirely cleared. Thus, zeroes are always treated as positive.

The range allowed by this format is as follows:

DECIMAL

	9.22337177 * 1018	>	Positive VALUE		>	5.42101070 * 10-20

-9.22337177 *1018 	> 	Negative VALUE	>	 -2.71050535 * 10-20

BINARY (HEXADECIMAL)

.FFFFFF	* 263	 > Pos VALUE	> 	.FFFFFF *	2-63

-.FFFFFF	* 263	 > Neg VALLUE	> 	 -.FFFFFF *	2-63

Binary Format

Binary values are represented normally by one bit 0 or 1, up to 8 binary values (flags, inputs, outputs) can be stored in 1 byte.

Application Protocol

Two different protocol procedures between a Client and a Server are used.

. Write & control procedure: (as seen at the Application Layer)

�

The Client does not expect any response .

Read procedure: (as seen at the Application Layer)

�

The Client expects a read response.

PRESENTATION LAYER

All the telegrams which are used by the SAIA-BUS Protocol are described in this layer.

Most telegrams are of a fixed length and so there is no requirement for a special end of telegram character. Those telegrams which are not of fixed length have a count byte immediately following the command code to indicate the length of the telegram. There is no need for a count byte in the response telegram as the client will already know the length of the telegram that he is expecting.

A telegram can have an absolute maximum length of 32 registers/timers/counters or 128 flags/inputs/outputs when in run. Some special telegrams can have more bytes than this but these telegrams cannot be used when the CPU is in run. For instance, to optimise the downloading of a program up to 64 program lines can be transferred at a time which gives a maximum telegram length of 263 bytes.

Syntax Representation

 Example

�

�

��

�

���

Read Input�Reduced (�Broadcast (�PGU active (���‘RI’����������01�cmd ::=�<command_code> <count> <addres-IOF>��sts ::=�{<bit-value>}+��

���

{ <a> }+ represents :

	 - for read (<r-count>) occurrences of the expression <a>

 [<a>] represents an optional parameter

Permissionning.

Reduced: the box is ticked when the command is part of the reduced protocol.

Broadcast: the box is ticked when the command can be executed in broadcast mode.

PGU active: the box is ticked when the command can be executed when a PGU session is being executed.

General Definitions

<act_trans>�::=�<2-byte>[<act_trans>]��<address-EEPROM>�::=�<2-byte>��<address-IOF>�::=�<2-byte>��<address-RTC>�::=�<2-byte>��<address-prog>�::=�<3-byte>��<address-68000>�::=�<3-byte>��<ascii-char>�::=�<1-byte> ��<b-count>�::=�<1-byte> Where the value indicates the number of bytes following the <b-count> location until the end of the telegram. From this the server can indirectly calculate the number of elements to be written to the maximum value allowed in b-count is 15 which represents the maximum number of possible bytes for 2 break points.

��<bit-value>�::=�<1-byte> <00> or <01>��<block-number>�::=�<2-byte>��<block-size>�::=�<3-byte>��<block-type>�::=�<1-byte> --> 	00h <=> COB

	01h <=> XOB

	02h <=> PB

	03h <=> FB

	04h <=> ST

	05h <=> TR

	06h <=> TEXT

	07h <=> DB

	08h <=> SB��<break-point>�::=�<arithmetic-status-code> <status> <mask>

<display-register-code> <operator> <4-byte> |

<index-register-code> <operator> <2-byte>

<input-code> <address-IOF> <bit-value>

<output-code> <address-IOF> <bit-value>

<flag-code> <address-IOF> <bit-value>

<instruction-pointer-code> <operator>

<address-prog>

<'op-code'-code> <op-code>

<register-code> <address-RTC> <operator>

<4-byte>

<counter-code> <address-RTC> <operator>

<4-byte>

<timer-code> <address-RTC> <operator>

<4-byte>

<number-of-steps-code> <4-byte>

<instruction-line-code> <op-code><operand>

Where the condition codes are of byte length with the folowing values

<arithmetic-status-code>	::= 00

<counter-code>		::= 01

<display-register-code>	::= 02

<flag-code>		::= 03

<index-register-code>		::= 04

<input-code>		::= 05

<instruction-line-code>	::= 06

<instruction-pointer-code> 	::= 07

<number-of-steps-code>	::= 08

<output-code>		::= 09

<'op-code'-code> 	::= 0A

<register-code>		::= 0B

<timer-code>		::= 0C��<character>�::=�printing character code: 20hex -> 7Fhex��<char-position>�::=�<2-byte>

This represents the offset into a text��<clock-value>�::=�<week-year> <day-week> <year> <month> <day> <hour> <minute> <second>��<cpu-number>�::=�<character>��<CPU-no>�::=�<1-byte>	(0..6)��<day>�::=�<1-byte> containing 2 BCD digits (01 - 31)��<day-week>�::=�<1-byte> containing 2 BCD digits (01 - 07)��<fail-address>�::=�<4-byte>��<fail-date>�::=�<year> <month> <day> <hour> <minute> <second>��<fail-text>�::=�<16-character>��<fio-byte>�::=�<1-byte> where each F/I/O is represented by a bit in the byte.��<fio-count>�::=�<1-byte> to indicate the number of F/I/O's to be written.��<flags>�::=�<1-byte> Where the byte is divided like so :- 	

 +---+---+---+---+---+---+---+---+

	| X | X | X | X | Z | N | E | A |

	+---+---+---+---+---+---+---+---+

				 Z ::=	zero-flag

				 N ::=	neg-flag

				 E ::=	error-flag

				 A ::=	accu-flag

��<hangup-timeout>�::=�<2-byte>��<hour>�::=�<1-byte> containing 2 BCD digits (00 - 23)��<length>�::=�<1-byte>��<mask>�::=�<flags>��<minute>�::=�<1-byte> containing 2 BCD digits (00 - 59)��<module-type>�::=�<5-character>��<month>�::=�<1-byte> containing 2 BCD digits (01 - 12)��<nbr_elements>�::=�<2-byte>��<number-of-chars>�::=�<2-byte>��<o-count>�::=�1-byte> (op-code operand byte count) Where the value indicates the number of bytes following the <o-count> location until the end of the telegram. From this the server can indirectly calculate the number of op-codes and operands in the telegram. The minimum value is 3 ,the maximum value is 15.��<op-code>�::=�<2-byte> : 0x xx ->MSNibble == 0 !!!��<operand>�::=�<2-byte>��<operator>�::=�<LT> | <EQ> | <GT> | <NE>

	 Where <LT> ::= 00 (1 byte)

		 <EQ> ::= 01 (1 byte)

		 <GT> ::= 02 (1 byte)

		 <NE> ::= 03 (1 byte)��<ret-address>�::=�<3-byte>��<r-count>�::=�<1-byte>

 Where the value indicates the number of elements expected in the status telegram returned to the client. Wherever this byte is used the range of valid values is indicated. This range is imposed to limit the length of the telegram to a maximum of 256 bytes.

��<sblock>�::=�<1-byte>��<second>�::=�<1-byte> containing 2 BCD digits (00 - 59)��<station-number>�::=�<1-byte>��<status>�::=�<flags>��<text-number>�::=�<2-byte>��<type_of_erase>�::=�<1-byte>��<version>�::=�<3-character>��<w-count>�::=�<1-byte>

Where the value indicates the number of bytes following the <w-count> location until the end of the telegram. From this the server can indirectly calculate the number of elements to be written to. Wherever this byte is used the range of valid values is indicated. This range is imposed to limit the length of the telegram to a maximum of 256 bytes.��<week-year>�::=�<1-byte> containing 2 BCD digits (01 - 52)��<year>�::=�<1-byte> containing 2 BCD digits (01 - 99)��<4-byte>�::=�<1-byte> <1-byte> <1-byte> <1-byte>��<2-byte>�::=�<1-byte> <1-byte>��<1-byte>�::=�00 - FF hex, 0 - 255 decimal��

�

Variable Access Service Telegrams

Read Counter�Reduced (�Broadcast (�PGU active (���'RC'����������00�cmd ::=�00 <r-count> <address-RTC>��sts ::=�{<4-byte>}+���Where:���Length of sts ::= (<r-count>+1) * <4-byte>

Range of <r-count> ::= 0 - 31��

Read Display Register�Reduced (�Broadcast (�PGU active (���'RD'����������01�cmd ::=�01��sts ::=�<4-byte>���Where:�����

Read Flag�Reduced (�Broadcast (�PGU active (���'RF'����������02�cmd ::=�02 <r-count> <address-IOF>��sts ::=�{<fio-byte>}+���Where:���Length of sts	 ::= (<r-count>+1)/8 * <fio-byte>

Range of <r-count> ::= 0 - 127��

Read Input�Reduced (�Broadcast (�PGU active (���'RI'����������03�cmd ::=�03 <r-count> <address-IOF>��sts ::=�{<fio-byte>}+���Where:���Length of sts	 ::= (<r-count>+1)/8 * <fio-byte>

Range of <r-count> ::= 0 - 127��

Read Real Time Clock�Reduced (�Broadcast (�PGU active (���'RK'����������04�cmd ::=�04��sts ::=�<clock-value>��

Read Output�Reduced (�Broadcast (�PGU active (���'RO'����������05�cmd ::=�05 <r-count> <address-IOF>��sts ::=�{<fio-byte>}+���Where:���Length of sts	 ::= (<r-count>+1)/8 * <fio-byte>

Range of <r-count> ::= 0 - 127��

Read Register�Reduced (�Broadcast (�PGU active (���'RR'����������06�cmd ::=�06 <r-count> <address-RTC>��sts ::=�{<4-byte>}+���Where:���Length of sts	 ::= (<r-count>+1) * <4-byte>

Range of <r-count> ::= 0 - 31��

Read Timer�Reduced (�Broadcast (�PGU active (���'RT'����������07�cmd ::=�07 <r-count> <address-RTC>��sts ::=�{<4-byte>}+���Where:���Length of sts	 ::= (<r-count>+1) * <4-byte>

Range of <r-count> ::= 0 - 31��	

Write Counter�Reduced (�Broadcast (�PGU active (���'WC'����������10�cmd ::=�0A <w-count> <address-RTC> {<4-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 5 - 129��

Write Flag�Reduced (�Broadcast (�PGU active (���'WF'����������11�cmd ::=�0B <w-count> <address-IOF> <fio-count> {<fio-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 2 - 17

Range of <fio-count> ::= 0 - 127��

Write Real Time Clock�Reduced (�Broadcast (�PGU active (���'WK'����������12�cmd ::=�0C <clock-value>��sts ::=�empty��

Write Output�Reduced (�Broadcast (�PGU active (���'WO'����������13�cmd ::=�0D <w-count> <address-IOF> <fio-count> {<fio-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 2 - 17

Range of <fio-count> ::= 0 - 127��	

Write Register�Reduced (�Broadcast (�PGU active (���'WR'����������14�cmd ::=�0E <w-count> <address-RTC> {<4-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 5 - 129��

Write Timer�Reduced (�Broadcast (�PGU active (���'WT'����������15�cmd ::=�0F <w-count> <address-RTC> {<4-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 5 - 129��

Read PCD Status�Reduced (�Broadcast (�PGU active (���'RS0'�'RS1'�'RS2'�'RS3’�'RS4'�'RS5'�'RS6'�'RS7'���20 - 27�cmd ::=�14�15�16�17�18�19�1A�1B����RS0…6: cpu number

RS7: own��sts ::=�'S'�'H'�'R'�'C'�'D'�('X')������Where:���'X' is an 'Exceptional Intermediate Status' only (For more details see the documents of the project 'MODEMS+').��

Read S-BUS station number�Reduced (�Broadcast (�PGU active (�������������29�cmd ::=�1D��sts ::=�<station-number>��

Read User Memory�Reduced (�Broadcast (�PGU active (���'RM'����������30�cmd ::=�1E <r-count> <address-prog>��sts ::=�{<4-byte>}+���Where:���Length of sts	 ::= (<r-count>+1) * <4-byte>

Range of <r-count> ::= 0 - 63 (Read a maximum of 64 program lines per telegram)��

Read Program Line�Reduced (�Broadcast (�PGU active (���'RP'����������31�cmd ::=�1F <r-count> <address-prog>��sts ::=�{<op-code> <operand>}+���Where:���Length of sts	 ::=	(<r-count>+1) * <4-byte>

Range of <r-count> ::=	0 - 63 (Read a maximum of 64 program lines per telegram)��

Read System Program Version�Reduced (�Broadcast (�PGU active (���'RV'����������32�cmd ::=�20��sts ::=�<module-type> <version> <cpu-number>��

Read Text�Reduced (�Broadcast (�PGU active (���'RX'����������33�cmd ::=�21 <r-count> <text-number> <char-position>��sts ::=�{<ascii-char>}+���Where:���<r-count> represents the number of characters in the text to be read. If the number of characters passes the End Of Text then the client throws away the rest of the characters.

Range of <r-count> ::= 0 - 255��

Read Active Transitions�Reduced (�Broadcast (�PGU active (���'TA'����������34�cmd ::=�22 <sblock>��sts ::=�<length>{<act_trans>}+���Where:���<length> is defined as ABSOLUTE byte-counter (00,02,04,06,08,...).

<length> = 00h means NO <act_trans> => sts ::= 00 !��

Write User Memory�Reduced (�Broadcast (�PGU active (���'WM'����������35�cmd ::=�23 <w-count> <address-prog> {<4-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 6 - 130

(Maximum of 32 program lines per transfer)��

Write Program Line�Reduced (�Broadcast (�PGU active (���'WP'����������36�cmd ::=�24 <w-count> <address-prog> {<op-code> <operand>}+��sts ::=�empty���Where:���Range of <w-count> ::= 6 - 130

(Maximum of 32 program lines per transfer)��	

Write Text�Reduced (�Broadcast (�PGU active (���'WX'����������37�cmd ::=�25 <w-count> <text-number> <char-position> {<ascii-char>}+��sts ::=�empty���Where:���Range of <w-count> ::= 4 - 131

(Maximum of 128 ascii characters per transfer)��

Run Procedure�Reduced (�Broadcast (*�PGU active (���'GP0’�'GP1’�'GP2’�'GP3’�'GP4’�'GP5’�'GP6’�'GP7’�'GP8’��40 - 48�cmd ::=�28�29�2A�2B�2C�2D�2E�2F�30���'GP0->6'- CPU Number

'GP7' - Own CPU

'GP8' - All CPUs (*can work in broadcast mode)��sts ::=�empty��

Restart Cold�Reduced (�Broadcast (*�PGU active (���'SC1’�'SC2’�'SC3’�'SC4’�'SC5’�'SC6’�'SC7’�'SC8’���50 - 57�cmd ::=�32�33�34�35�36�37�38�39����'SC1->6' - CPU Number

'SC7' - Own CPU

'SC8' - All CPUs (*can work in broadcast mode)��sts ::=���	

Stop Procedure�Reduced (�Broadcast (*�PGU active (���'SP0’�'SP1’�'SP2’�'SP3’�'SP4’�'SP5’�'SP6’�'SP7’�'SPGU’��60 - 68�cmd ::=�3C�3D�3E�3F�40�41�42�43�44���'SP0->6'- CPU Number

'SP7' - Own CPU

'SPGU' - All CPUs (*can work in broadcast mode)��sts ::=�empty��

Read Arithmetic Status And Accumulator�Reduced (�Broadcast (�PGU active (���'RA'����������70�cmd ::=�46��sts ::=�<flags>��

Read Byte�Reduced (�Broadcast (�PGU active (���'RB'����������71�cmd ::=�47 <r-count> <address-68000>��sts ::=�{<1-byte>}+���Where:���Length of sts ::= (<r-count>+1) * <1-byte>

Range of <r-count> ::= 0-127 (Maximum of 128 bytes per transfer)��

Read Halt Failure Register�Reduced (�Broadcast (�PGU active (���'RH'����������72�cmd ::=�48��sts ::=�<fail-text> <fail-address> <fail-date>��

Read Index Register�Reduced (�Broadcast (�PGU active (���'RN'����������73�cmd ::=�49��sts ::=�<2-hex-byte>��

Read Instruction Pointer�Reduced (�Broadcast (�PGU active (���'RU'����������74�cmd ::=�4A��sts ::=�<address-prog>��

Find History�Reduced (�Broadcast (�PGU active (���'FH'����������75�cmd ::=�4B��sts ::=�<address_68000><nbr_elements>���Returns the address of the table of history failure with its maximum number of elements.��

Write Arithmetic Status And Accumulator�Reduced (�Broadcast (�PGU active (���'WA'����������80�cmd ::=�50 <flags>��sts ::=�empty��

Write Byte�Reduced (�Broadcast (�PGU active (���'WB'����������81�cmd ::=�51 <w-count> <address-68000> {<1-byte>}+��sts ::=�empty���Where:���range of <w-count> ::= 3 - 130 (Max 128 bytes)��					

Write Index Register�Reduced (�Broadcast (�PGU active (���'WN'����������82�cmd ::=�52 <2-byte>��sts ::=�empty��

Write Instruction Pointer�Reduced (�Broadcast (�PGU active (���'WU'����������83�cmd ::=�53 <address-prog>��sts ::=�empty��	

Clear With Variations�Reduced (�Broadcast (�PGU active (���'CA'�'CF'�'CO'�'CR'�'CT'������90 - 94�cmd ::=�5A�5B�5C �5D�5E�������Clear All, Flags, Outputs, Registers, Timers��sts ::=�empty��

Restart Warm�Reduced (�Broadcast (�PGU active (���‘SW1’�‘SW2’�‘SW3’�‘SW4’�‘SW5’�‘SW6’�‘SW7’�‘SW8’���100 - 107�cmd ::=�64�65�66�67�68�69�6A�6B����'SW1…6':CPU Number

'SW7': Own CPU

'SW8': All CPUs��sts ::=�empty��

Change Block�Reduced (�Broadcast (�PGU active (���'CB'����������110�cmd ::=�6E <block-type> <block-number> <address-prog>��sts ::=�empty���Where:���Allowed block-types are ::= 0,1,2,3,4,5,6,7 AND 8 (cob,xob,pb,fb,st,tr,text,db AND sb)��

Clear History Failure�Reduced (�Broadcast (�PGU active (���'CH'����������111�cmd ::=�6F��sts ::=�empty��

Delete Program Line�Reduced (�Broadcast (�PGU active (���'DP'����������112�cmd ::=�70 <address-prog>��sts ::=�empty��

Go Conditional�Reduced (�Broadcast (�PGU active (���'GC'����������113�cmd ::=�71 <b-count> <break-point> [<break-point>]��sts ::=�empty��

Insert Program Line�Reduced (�Broadcast (�PGU active (���'IP'����������114�cmd ::=�72 <address-prog>��sts ::=�empty��

Local/All Cycles �Reduced (�Broadcast (�PGU active (���'LC'�'AC'���������115 - 116�cmd ::=�73�74���������sts ::=�empty��				

Make Text�Reduced (�Broadcast (�PGU active (���'MX'����������117�cmd ::=�75 <text-number> <number-of-chars>��sts ::=�empty��

Execute Single Instruction�Reduced (�Broadcast (�PGU active (���'SI'����������118�cmd ::=�76 <o-count> <op-code> <operand> [<op-code> <operand>]

[<op-code> <operand>] [<op-code> <operand>]��sts ::=�empty��

Single Step�Reduced (�Broadcast (�PGU active (���'SS'����������119�cmd ::=�77��sts ::=�empty��	

XOB_17 Interrupt�Reduced (�Broadcast (�PGU active (�������������130�cmd ::=�82��sts ::=�empty��

XOB_18 Interrupt�Reduced (�Broadcast (�PGU active (�������������131�cmd ::=�83��sts ::=�empty��

XOB_19 Interrupt�Reduced (�Broadcast (�PGU active (�������������132�cmd ::=�84��sts ::=�empty��

Read Hangup Timeout �Reduced (�Broadcast (�PGU active (�������������145�cmd ::=�91 <hangup-timeout> ��sts ::=�empty���Where:���<hangup-timeout> is defined as follows:

Unit: [Seconds], Range: 0..300 seconds, (MSByte first).

(See UNDO SBUS-PGU-PLM mechanism project 'MODEMS+)��

Read Data Block�Reduced (�Broadcast (�PGU active (���'RZ'����������150�cmd ::=�96 <r-count> <db-number> <db-element>��sts ::=�{<4-byte>}+���Where:���Length of sts	 ::= (<r-count>+1) * <4-byte>

Range of <r-count> ::= 0 - 31��

Write Data Block�Reduced (�Broadcast (�PGU active (���'WZ'����������151�cmd ::=�97 <w-count> <db-number> <db-element> {<4-byte>}+��sts ::=�empty���Where:���Range of <w-count> ::= 7 - 131��

Make Data Block�Reduced (�Broadcast (�PGU active (���'MZ'����������152�cmd ::=�98 <db-number> <db-size>��sts ::=�empty��

Clear Data Block�Reduced (�Broadcast (�PGU active (���'CZ'����������153�cmd ::=�99 <db-number>��sts ::=���

Clear Text�Reduced (�Broadcast (�PGU active (���'CX'����������154�cmd ::=�9A <text-number>��sts ::=�empty��	

Read Block Addresses�Reduced (�Broadcast (�PGU active (���'R1'����������155�cmd ::=�9B <r-count> <block-type> <block-number>��sts ::=�{<address-prog>}+���Where:���Length of sts		 ::= (<r-count>+1) * <address-prog>

Range of <r-count>	 ::= 0 - 31

Allowed block-types are 	 ::= 0,1,2,3,4,5,6,7 AND 8 (cob,xob,pb,fb,st,tr,text,db AND sb)��

Read Block Sizes�Reduced (�Broadcast (�PGU active (���'R2'����������156�cmd ::=�9C <r-count> <block-type> <block-number>��sts ::=�{<block-size>}+���Where:���Length of sts		 ::= (<r-count>+1) * <block-size>

Range of <r-count>	 ::= 0 - 31

Allowed block-types are ::= 0,1,2,3,4,5,6,7 AND 8 (cob,xob,pb,fb,st,tr,text,db AND sb)��	

Read Current Block�Reduced (�Broadcast (�PGU active (���'R3'����������157�cmd ::=�9D��sts ::=�<block-type> <block-number>���Where:���Allowed block-types are ::= 0,1,2,3,4,5 AND 8 (cob,xob,pb,fb,st,tr AND sb)��

Read Call Stack�Reduced (�Broadcast (�PGU active (���'R4'����������158�cmd ::=�9E��sts ::=�<depth> {<block-type> <block-number> <ret-address>}+���Where:���<depth> is defined as ABSOLUTE byte-counter (00,06,0C,...)

<depth> = 00h means NO data after <depth> => sts ::= 00 !

Allowed block-types are ::= 0,1,2,3,4,5 AND 8 (cob,xob,pb,fb,st,tr AND sb)��

Read User EEPROM register�Reduced (�Broadcast (�PGU active (�������������161�cmd ::=�A1 02 <r-count><address-EEPROM>��sts ::=�{<4-bytes>}+���Where:���Length of sts		::= (r-count>+1) * <4-bytes>

Range of <r-count>	::= 0…4

<address-EEPROM>	::= 0…4 (2 bytes) to address the user registers��

Write User EEPROM register�Reduced (�Broadcast (�PGU active (�������������163�cmd ::=�A3 05 <address-EEPROM> <4-bytes>��sts ::=�empty���Where:���<address-EEPROM>	::= 0…4 (2 bytes) to address the user registers

NOTE: the telegram structure ‘A3 05’ means that there will be a NAK response on systems where this telegram is not implemented.��

Erase Flash�Reduced (�Broadcast (�PGU active (���‘FE’����������165�cmd ::=�A5 <type of erase>��sts ::=�empty���Where:���range of <Type of erase> ::= 0..10

	0:	erase entire flash

	1:	erase header only

	2:	erase program for CPU0 and header

	3:	erase program for CPU1 and header

	4:	erase program for CPU2 and header

	5:	erase program for CPU3 and header

	6:	erase program for CPU4 and header

	7:	erase program for CPU5 and header

	8:	erase program for CPU6 and header

	9:	erase program for all CPUs

	10:	disable further FLASH write access

��

Restart Cold Flag�Reduced (�Broadcast (�PGU active (�������������166�cmd ::=�A6��sts ::=�empty��

 Notes:	'empty' means : sending a 'NAK' or an 'ACK' as response. For the BROADCAST mode there is NO response message at all !

NETWORK LAYER

Network Layer Service

The network layer service is very simple and takes advantage of the multidrop feature of the DUART used in the PCD family. This multidrop mode eliminates the need for special start characters in each telegram. This mode supports two different types of character, an address character and a data character. The difference between the two is that for an address character the parity bit is forced to 1 and for a data character the parity bit is forced to 0. A telegram consists of an address character followed by a number of data characters targeted for a particular slave station. When any address character is detected in the data stream the slave station compares its address to the address character received before deciding whether to receive the data characters in the telegram. Slave stations which are not addressed continue monitoring the data stream for the next address character.

The address 255 (dec) is to be reserved for broadcast messages. No response is expected after transmission of a broadcast message.

The multidrop mode is a common feature which exists on a number of very common microcontrollers / Duarts, for instance :-

Intel MCS-51 microcontroller family.

National Semiconductor INS8250 UART - The standard Uart for ALL IBM and IBM compatible PC's.

Motorola 68681 DUART - The DUART used in the PCD series of PLCs.

The structure of a typical telegram

Let’s take the telegram

		Write Register 100 12345 Dec

to station 10 in the SAIA-BUS network. The telegram will look like so:

������������

�������

��

This shows the structure of a typical telegram as seen at the Physical Layer.

DATA LINK LAYER

The Data link layer can be divided into two sub-layers.

Upper Sub-layer

The Upper Sub-layer manages the point to point communication between stations on the network. If a telegram is lost or corrupted then this layer will manage the retransmission of this telegram. The functionality of this level can be seen in the following diagrams.

There are two response telegrams, these are NAK (the negative response) and ACK (the positive response telegram).

When a telegram is received which is illegal, such as Change block to a non-existent block or reception of a telegram which is not supported by the services running in the server, then a NAK is returned. For instance, if the server is running the reduced protocol services and it receives a run command then a NAK will be returned. If a NAK is received then the client immediately informs the upper layers that it has transmitted an illegal telegram.

If a corrupted telegram is detected then there is no response and the client will timeout up to three times before informing the upper layers that there has been a transmission failure. The timeout will be a function of the Baud rate.

Transmission of a command telegram

This shows the successful transmission of a telegram.

�

In the example below a corrupted telegram is received at the server and the client receives no response. The telegram will then be retransmitted after the client has timed out.

�

If a message does not receive a response of any form after t_out ms then it is repeated. A message is transmitted a total of three times, ie there will be two retries. The variable t_out will be dependent on the baud rate and will be defined at a later date.

�

Invocation of response messages

Upon reception of the read telegram the server will transmit the response directly. Any response which appears on the network must be for the client, so there is no need for a special start of telegram character or address character for the response.

This example shows the successful execution of a read response telegram

�

A NAK reply to the read telegram will indicate to the client that the telegram was illegal.

�

Half-Duplex Protocol

Only one station can be master in a network and so only a half duplex protocol is supported. This means that there is never any danger of deadlock of contending clients.

.H2 Lower Sub-layer

The main task of this layer is to manage the CRC-16 error checking code. This type of error checking is used since this protocol uses no form of parity checking on individual bytes. The CRC-16 error checking algorithm uses the polynomial

	X^16 + X^12 + X^5 + 1 = 1021 Hex

This is the standard CCITT CRC (Reference CCITT V-41). The procedure for calculating the CRC-16 will be made available as a 'C' function.

The SAIA-BUS protocol will run at all standard baud rates, with 8 bits per character, forced parity and one stop bit. The baud rate for the full protocol will be defined in the configure menu with a default of 9600 baud. The reduced protocol will be defined using the standard SASI instruction.

PHYSICAL LAYER

SAIA-BUS will run on all the types of communications ports of the PCD family.

Physical Layer RS485

The SAIA-BUS is designed to run over an RS485 Multidrop network of one client and a maximum of 32 servers. An SAIA-BUS repeater is under consideration so that the number of server stations can be increased past this limit imposed by the RS485 standard (EIA RS-485).

Physical Layer RS232

It will also be possible to run the SAIA-BUS over a modem using private lines via an RS232 interface on the PCD. The only control signals supported will be RTS and CTS so only the simplest of modems can be used for such a facility.

APPENDIX A: Telegram Permissioning

Introduction

For SBUS there is now a difference between a 'Full' SBUS PCD slave and a 'Reduced' SBUS PCD slave. A PCD is assigned as a 'Full' SBUS slave station if one serial interface is configured via PG3/4-Utilities as SBUS-PGU port. Such slave accepts all implemented telegrams. The SAIA PG3/4-Utilities check the validity of all telegrams (Address, Range,...).

A user can assign any port as SBUS slave via AWL instruction 'SASI' in the user program. Such a slave is defined as a 'reduced' one and it accepts only the telegrams defined as members of the REDUCED PROTOCOL. Any other telegram forces the slave to immediately send a 'NAK'-response !

Comment for permission table

A) Telegrams supported by an SBUS slave station port defined via configurator (SAIA SPS Utilities V1.7 ++) as SBUS-PGU port:

a) Normal case. Means without PGU activity.

b) If PGU is active then some telegrams will be masked out for SBUS-PGU to avoid dangerous conflicts. That means that masked telegrams will not be accepted as valid ones and the SBUS slave simply will send a 'NAK'-response if the tgm was correct (means if CRC check ok).

c) Permission for BROADCAST mode. If this mode is allowed then addressed slaves will take action on received telegram without sending a response message.

 (1) For broadcast mode: Only Run ALL, Restart Cold ALL and Stop ALL allowed !

B) Telegrams supported by an SBUS slave station port defined via user instruction 'SASI' for communications modes SS0 or SS1:

a) Normal case.

b) If PGU is active then some telegrams will be masked out for SBUS to avoid dangerous conflicts. That means that masked telegrams will not be accepted as valid ones and the SBUS slave simply will send a 'NAK'-response if the tgm was correct (means if CRC check ok). But ALL tgm's of the REDUCED PROTOCOL are allowed in parallel to the PGU anyway!

c) Permission for BROADCAST mode. If this mode is allowed then addressed slaves will take action on received telegram without sending a response message.

�

file:�FILENAME �ddfp6027.doc� Doc# �TITLE � DD-EPFW6-027� �RD �	Page �PAGE�1�/�NUMPAGES �21�	�AUTHOR �Patrick PERRIER�

Program Commissioning Service

Program Management service

Status service

Variable access service

S

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Byte number

0

1

2

3

31

0

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

S

E

E

E

E

E

E

E

Byte number

0

1

2

3

31

0

<write request>

CLIENT

SERVER

Write or control action

<read request>

CLIENT

SERVER

Read action

<read response>

Function and name of telegram

Name of equivalent PGU-Protocol telegram

	

Command code in hexadecimal

Permissionning

(see below)

sts : Status telegram returned from the SERVER to the CLIENT

(The <read response> entity of the Application Layer)

01: Command code in decimal

cmd : Command telegram from the CLIENT to the SERVER

(The <request> entity of the Application Layer)

Command code

< CRC-16lsbyte >

< CRC-16msbyte >

<00>

<30>

<39>

<00>

<64>

<00>

<05>

<0E>

<0A>

Address of station

Count (number of remaining char)

Absolute address of register (2-byte)

Value 12345 (dec) in hexadecimal (4-byte)

Two bytes of CRC-16

CLIENT

SERVER

<addr><cmd><CRC-16>

ACK

Action

<addr><cmd><CRC-16>

next message invokes next action

CLIENT

SERVER

<addr><cmd><CRC-16>

ACK

Error detected by the two bytes of CRC-16

Time-out ms

NAK

<addr><cmd><CRC-16>

Uncorrupted but illegal telegram.

Action

<addr><cmd><CRC-16>

Legal telegram

Action

CLIENT

SERVER

<addr><cmd><CRC-16>

ACK

Telegram lost

Time-out ms

ACK

<addr><cmd><CRC-16>

Retransmit telegram.

Response lost

<addr><cmd><CRC-16>

Repeat action

Response received

????

Time-out ms

????

CLIENT

SERVER

<addr><cmd><CRC-16>

<sts><CRC-16>

Reception of read telegram

Transmit response

CLIENT

SERVER

<addr><cmd><CRC-16>

Telegram lost

Time-out ms

NAK

<addr><cmd><CRC-16>

Transmission error detected by CRC-16.

Uncorrupted but illegal telegram.

<addr><cmd><CRC-16>

Action

<sts><CRC-16>

Transmit response.

????

Time-out ms

<addr><cmd><CRC-16>

Reception of valid new read telegram.

